Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
строительное дело
регулятор давления всасывания
нефтегазовая промышленность
регулятор обратного давления (применяемый для определения забойного давления)
общая лексика
ток покоя
A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.
The terms "regulator" and "demand valve" are often used interchangeably, but a demand valve is the final stage pressure-reduction regulator that delivers gas only while the diver is inhaling and reduces the gas pressure to approximately ambient. In single-hose demand regulators, the demand valve is either held in the diver's mouth by a mouthpiece or attached to the full-face mask or helmet. In twin-hose regulators the demand valve is included in the body of the regulator which is usually attached directly to the cylinder valve or manifold outlet, with a remote mouthpiece supplied at ambient pressure.
A pressure-reduction regulator is used to control the delivery pressure of the gas supplied to a free-flow helmet or full-face mask, in which the flow is continuous, to maintain the downstream pressure which is provided by the ambient pressure of the exhaust and the flow resistance of the delivery system (mainly the umbilical and exhaust valve) and not much influenced by the breathing of the diver. Diving rebreather systems may also use regulators to control the flow of fresh gas, and demand valves, known as automatic diluent valves, to maintain the volume in the breathing loop during descent. Gas reclaim systems and built-in breathing systems (BIBS) use a different kind of regulator to control the flow of exhaled gas to the return hose and through the topside reclaim system, these are of the back-pressure regulator class.
The performance of a regulator is measured by the cracking pressure and added mechanical work of breathing, and the capacity to deliver breathing gas at peak inspiratory flow rate at high ambient pressures without excessive pressure drop, and without excessive dead space. For some cold water diving applications the capacity to deliver high flow rates at low ambient temperatures without jamming due to regulator freezing is important.